Die Kristallstrukturen von TiSi, Ti(Al,Si)₂ und Mo(Al,Si)₂ Von

C. Brukl, H. Nowotny, O. Schob und F. Benesovsky

Aus dem Institut für Physikalische Chemie der Universität Wien und der Metallwerk Plansee A. G., Reutte/Tirol

(Eingegangen am 14. April 1961)

Es werden die Kristallstrukturen der Silicidphasen: TiSi, TiAl_{0,3-0,6}Si_{1,7-1,4} und MoAl_{1,3}Si_{0,7} ermittelt. TiSi ist mit der FeB-Struktur isotyp, wie bereits früher festgestellt wurde. Die Gitterparameter sind: $a = 6,53_1$, $b = 3,63_1$ und $c = 4,98_7$ kX. E. Die Struktur TiAl_{0,3-0,6}Si_{1,7-1,4} kann zum ZrSi₂-Typ gerechnet werden, ist aber pseudotetragonal: $a = c = 3,58_3$ —3,61₁ und b = 13,49 kX. E. Neben Mo(Si,Al)₂ mit C 40-Typ besteht noch eine weitere Al-reichere, ternäre Kristallart MoAl_{1,3}Si_{0,7} mit TiSi₂-Typ. Die Gitterparameter errechnen sich zu: $a = 8,23_9$, $b = 4,78_3$ und $c = 8,75_8$ kX. E.

Im Laufe der Untersuchungen an verschiedenen ternären Systemen vom Typus: Me—Al—Si (Me = Übergangsmetall) konnte eine Reihe interessanter kristallchemischer Befunde gemacht werden¹.

Die Phase TiSi. Das bereits durch thermische Analyse und mikrographische Beobachtungen² vermutete Monosilicid konnte in der Folge in eindeutiger Weise bestätigt werden. Wegen der peritektischen Bildung entzog sich diese Phase häufig einer genauen Untersuchung, insbesondere der Strukturbestimmung. Nichtsdestoweniger wurde TiSi als isotyp mit der FeB-Struktur erkannt³. Später brachten N. V. Ageev und G. V. Samsonov⁴ einen Strukturvorschlag und gaben dafür die Gitterkonstanten: $a = 3,61_1$, $b = 4,96_0$ und $c = 6,47_9$ kX. E. sowie die Raumgruppe $D_{2n}^{1} (C_{2v}^{1})$ an. Wie B. Aronsson⁵ dazu bemerkt, ist die Übereinstimmung in den Intensitätsverhältnissen nicht sehr befriedigend.

¹ H. Nowotny, F. Benesovsky und C. Brukl, Mh. Chem. 92, 193 (1961).

² M. Hansen, H. D. Kessler und D. J. McPherson, Trans. Amer. Soc. Metals 44, 518 (1952).

³ H. Schachner, E. Cerwenka und H. Nowotny, Mh. Chem. 58, 245 (1954).

⁴ N. V. Ageev und G. V. Samsonov, J. neorg. Chim. 4, 950 (1950).

⁵ B. Aronsson, Ark. Kemi 16, 379 (1960).

Mit Hilfe neuer Legierungsansätze: Ti—Si sowie Ti—Al—Si wurde nunmehr das Problem der TiSi-Struktur nochmals aufgegriffen. Kaltgepreßte Mischungen aus Pulver von Ti-Hydrid und reinstem Silicium* ließen wir bei etwa 1000° C in inerter Atmosphäre abreagieren. Eine Fertigglühung (Homogenisierung) geschah bei verschiedenen Ansätzen der Zusammensetzung um TiSi bei rd. 1200° C während 4 Stdn. Es konnte auf diese Weise neben den schon gut bekannten Phasen Ti₅Si₃ und TiSi₂ praktisch reines Monosilicid erhalten werden.

Die Pulveraufnahme einer Legierung mit 50 At% Si (Ansatz) ist in Tab. 1 ausgewertet. Die Indizierung gelingt leicht mit der von Ageev und Samsonov mitgeteilten rhombischen Elementarzelle. Die von uns gefundenen Gitterparameter unterscheiden sich (von der Vertauschung der Achsen abgeschen) mit: $a = 6,53_1$, $b = 3,63_1$ und $c = 4,98_7$ kX. E. nicht wesentlich von jenen der oben genannten Autoren. Das Linienmuster des Debyeogramms von TiSi weist eine so große Ähnlichkeit mit den Pulveraufnahmen von ZrSi⁶ bzw. HfSi⁷ auf, daß die bereits früher behauptete³ Isotypie mit FeB außer Frage steht. Mit den von ZrSi wenig verschiedenen Parametern: $x_{Ti} = 0,179$; $z_{Ti} = 0,127_5$, ergibt sich vorzügliche Übereinstimmung zwischen geschätzten und gerechneten Intensitäten. Als interatomare Abstände findet man: Ti—Ti = 3,22, Ti—Si = 2,59 und 2,62 und Si—Si in der charakteristischen Si—Si-Zickzack-Kette: 2,17 Å.

Eine weitere Schärfung der Parameterwerte mit Hilfe von Einkristallaufnahmen wäre aber erwünscht, um einen Vergleich mit den beiden Nachbarphasen (Ti_5Si_3 und $TiSi_2$) führen zu können.

Demnach sind auch im Falle von TiSi die Si—Si-Abstände wieder merklich kleiner als jene im Disilicid, was auch bei ZrSi gegenüber ZrSi₂ festgestellt wurde.

Die Monosilicide der 2a-, 3a- und 4a-Gruppe, einschließlich der Lanthanide und Actinide, sind demnach einheitlich durch das Vorhandensein von Si—Si-Ketten gekennzeichnet. Offenbar bildet aber das Titanmonosilicid einen Grenzfall in dieser Strukturklasse, bedingt durch das kleinere Radienverhältnis $r_{\rm Me}/r_{\rm Si}$ bzw. als Folge des geringeren Unterschiedes in der Elektronegativität: Me—Si. So gibt es in der 5a-Gruppe überhaupt keine Monosilicide, während mit der 6a-Gruppe beginnend andere Bauprinzipien maßgebend sind.

Die Phase Ti(Al, Si)₂: Eine ternäre Kristallart wurde bereits bei der Untersuchung des Schnittes: TiSi₂—Al von H. Nowotny und H.

⁶ H. Schachner, H. Nowotny und H. Kudielka, Mh. Chem. 85, 1140 (1954).

⁷ H. Nowotny, E. Laube, R. Kieffer und F. Benesovsky, Mh. Chem. 89, 701 (1958).

^{*} Herkunft, wie früher beschrieben.

Tabelle 1	(50 At% Si),			
hkl	10 ^s · sin² ϑ berechnet	10 ³ - sin ² ን beobachtet	Intensität geschätzt	Intensität berechnet
(101)	37,6		n. b.*	34
(200)	55,4	55,3	SSSS	3,9
(011)	68,6	68,7	s	86
(201)	79,2	79,7	s	103
(111)	82,4	82,6	$^{\mathrm{st}}$	347
(002)	95,0		-	1,5
(210)	100,2	100,1	sst	420
(102)	108,9	108,8	\mathbf{st}	376 Koinz. TiSi ₂
(211)	124,0	123,8	st	387
(301)	148,4	148,3	m	244
(202)	150,4		_	2,9
(112)	153,7	153,9	st^+	419
(020)	179,2	178,6	\mathbf{mst}	208 Koinz. TiSi ₂
(311)	193,2	193,5	s	51
(212)	195,2			0,9
(121)	216,8	216,8	SSSS	7,6
(302)	219,7	001.1	2222	∫ 1,8
(400)	221,61	241,1	8888	3,0
(103)	227,6			0
(220)	234,6			0
(401)	245,4	245,5	\mathbf{sm}	89
(221)	258,4	258 4	99	25
(013)	258,6)	200,4	66	1,0
(312)	264,5			$\begin{pmatrix} 31 \end{pmatrix}$
(410)	266,4	265,3	s—d	$\begin{cases} 20 \end{cases}$
(203)	269,1)			(7,0
(113)	272,4	271,5	SS	54
(022)	274,2			0,5
(122)	288,1	987.0	m	{141
(411)	290,2J	201,0	111	1 30
(213)	314,0	314.3	s+d	${104}$
(402)	316,6	011,0	5 04	(4,3
(321)	327,0	327.4	sm	{130
(222)	329,0]	0000	Ditt	(1,6
(303)	338,4	338,9	s	50
(412) (501)	301,4	270.0		1,1
(001)	370,0	370,6	SSSS	3,4
(004)	202.01	380.7	s-d	
(313)	204.0			1 10
(104)	200 0			
(844) (490)	330,3		-	1,4
(192)	406 9			2,2
(120) (511)	400,0	414.0		50 50
(491)	494 6)	414,9	8	02
(031)	427,0	424,7	sm	3,0

H. 3/1961] – Die Kristallstrukturen von TiSi, ${\rm Ti}({\rm Al},{\rm Si})_2$ und ${\rm Mo}({\rm Al},{\rm Si})_2-783$

* n. b. = nicht beobachtet, d = diffus

hkl	10 ³ · sin ² ∂	10 ³ · sin ² ⁹	Intensität	Intensität
<u>,,,</u> ,			Beschatzt	
(403)	435.4)			(39
(204)	435.4	435,6	ss	
(114)	438.7)	×		(2.4
(111)	440.8	440.8	SS	18
(502)	441.3	110,0	55	1.5
(223)	448.4	448.6	888	6.0
(230)	458.6	459.1	s	34
(413)	480.2)			(18
(214)	480.2	480.3	m	$\left\{\begin{array}{c} -62 \end{array}\right\}$
(231)	482.4		_	42
(512)	486.1	486.0	s+	74
(422)	495.8			0
(600)	498.6	498.3	SSS	18
(304)	504.7			0,6
(132)	512.1	512.2	s	60
(323)	517,6	518,3	s	52
(601)	522.4			0
(610)	543,4	543,6	SS	29
(521)	549,2			(3,8
(314)	549,5	548,8	sss—d	{ 3,0
(331)	551,6)			9,5
(232)	553,6			0
(024)	559,21]	∫ 63
(503)	560,0)	559,2	s	1 4,2
(611)	567,2	567,0	, 888	12
(124)	573, 1			0
(602)	593, 6			3,4
(404)	601,6			1,0
(513)	604,8	604,9	s	25 Koinz. TiSi ₂
(105)	607, 6			2,3
(423)	614,6	0145	,	∫ 53
(224)	614,6)	614,7	SS	
(033)	617,0			0
(522)	620, 5			0
(332)	622,9	691 9	0000	$\begin{cases} 9,5 \end{cases}$
(430)	624,8∫	024,5	5888	6,1
(133)	630,8	631,1	SSSS	17
(612)	638,4			0,4
(015)	638,6			6,6
(414)	646,4			
(431)	648,6	647 0	sed	9,0
(205)	649,2	UT1,0	00 4	6,2
(115)	652,4J	070.0	1	
(233)	672,4	672,6	SSS	41
(620)	077,8	077,0	SSS	49
(324)	083,9	602.9		0,9
(219) (891)	094,0 701 6	090,0	8	
(701)	701,0			Ő
(101)	104,4		t	, v

hkl	10 ³ · sin² ϑ berechnet	10 ³ • sin ² & beobachtet	Intensität geschätzt	Intensität berechnet
(603)	712,4			1,1
(040)	716,81			(32
(305)	718,4	716,8	sd	1 30
(432)	719,8	- 1		0
(504)	726,3			1,2
(523)	739,2]	F 80.0		∫ 8,4
(333)	744,6	739,3	ss—d	1 6,0
(711)	747,2			2,3
(141)	754,4			1,4
(613)	757,2)	Brer		∫ 8,7
(315)	763,2J	151,5	ssa	12
(514)	771,1			0
(240)	772,2	-		0
(622)	772,8			6,8
(531)	773,2	773,8	m	{ 35
(702)	773,7)			66
(424)	780,8			2,0
(125)	786,8			4,5
(241)	796,01	796.0	bd	8,7
(134)	797,11	100,0	DOD CK	(3,0
(042)	811,8			0
(405)	815,4	815,4	58	22
(712)	818,5			0,8
(142)	825,7	826.1	sd	59
(220)	828,4)			
(433)	838,0	838.4	s	
(234) (520)	838,0)	011 9		
(002) (008)	844,9 855 0	044,0	8	07
(415)	860.9			0,7
(341)	865.2	865.2	a	73
(242)	867.2	000,2		0.8
(106)	869.0	869.2	b—eee	32
(604)	878.6	878.5	sssd	40
(721)	881.6			0
(800)	882.4			15
(623)	891,6			2.8
(703)	892,4			0
(325)	897.61		_	(89
(630)	901,8	897,8	ss-d	1 38
(524)	905,5			3,6
(801)	906, 2			0
(334)	907,9			4,2
(206)	910,4			4,5
(116)	913,7	913,5	ss	71
(614)	923,4	924,0		(82
(631)	925,6	bis	sd	$\{ 22 \}$
(810)	927,25	927,0		L 46
(342)	936,5			1,0

H. 3/1961] Die Kristallstrukturen von TiSi, ${\rm Ti}({\rm Al},{\rm Si})_2$ und ${\rm Mo}({\rm Al},{\rm Si})_2$ 785

hkl	10 ³ · sin ² & berechnet	10³ • sin² ở beobachtet	Intensität geschätzt	Intensität berechnet
(713)	937,2	937,3	SSSS	18
(440)	938,4			2,2
(505)	940,0			2,0
(143)	944.4			0
(811) (722)	951,0 952,9	953,2	m+	$\begin{cases} 27\\ 275 \end{cases}$
(216)	955,2			0
(441) (533)	962, 2 963,2}	962,3	m	$ \left\{\begin{array}{c} 119\\ 62 \end{array}\right. $

Huschka beobachtet⁸. Im Dreistoff: Ti-Al-Si, dessen Beschreibung in Kürze ausführlich erfolgen soll, konnte, ähnlich wie bei früher untersuchten Me-Al-Si-Systemen, diese ternäre Phase auf dem Schnitt: TiSi2-TiAl (2) gefunden werden; ihr homogener Bereich ist durch die Formel TiAl_{0,3-0,6}Si_{1,7-1,4} gekennzeichnet. Es handelt sich demnach quasi um eine durch Aluminium stabilisierte zweite Modifikation des Titandisilicids. Diese Auffassung ist um so berechtigter, als sich zeigen läßt, daß die ternäre Phase in einer ZrSi2-Struktur bzw. in einem ganz eng dazu verwandten Typ kristallisiert. Die Auswertung einer Pulveraufnahme kann einwandfrei wie ZrSi2 indiziert werden, jedoch mit dem geringfügigen Unterschied, daß die a- und c-Achse gleich groß sind. Die Zelle ist demnach tetragonal bzw. pseudotetragonal. Die Gitterkonstanten lassen sich recht genau bestimmen, und zwar ist: $a = c = 3,58_3$ und b = 13,49 kX. E. auf der TiSi₂-reichen Seite, während an der Al-reichen Grenze dieser Kristallart: $a = c = 3.61_1$ kX. E. bei gleich großer b-Achse gemessen wird. Es ändern sich also nur die kurzen Achsen, dagegen konnte im gesamten homogenen Bereich keinerlei Aufspaltung bezüglich der a- bzw. c-Achse beobachtet werden. Aus diesem Grund ist die Annahme, daß hier bereits eine tetragonale Symmetrie vorliegt, mehr als wahrscheinlich. Schon eine Intensitätsrechnung mit den Parametern von ZrSi2⁶ ergibt befriedigende Übereinstimmung mit den gemessenen Intensitäten.

Auf die nahe Verwandtschaft zwischen dem TiSi₂- und dem ZrSi₂-Typ wurde bereits früher aufmerksam gemacht und im System: Ti-Zr-Si gezeigt, daß ZrSi₂ bis fast 60 Mol% TiSi₂ (bei 1300° C) aufnimmt⁹. Dabei gehen die ebenen Bauelemente von TiSi₂ in gebuckelte über, was also bei teilweisem Ersatz sowohl von Ti durch Zr als auch von Si durch Al erfolgt.

⁸ H. Nowotny und H. Huschka, Mh. Chem. 88, 494 (1957).

⁹ H. Nowotny, R. Machenschalk, R. Kieffer und F. Benesovsky, Mh. Chem. 85, 241 (1954).

H. 3/1961] Die Kristallstrukturen von TiSi, Ti(Al, Si)₂ und Mo(Al, Si)₂ 787

P. G. Cotter, J. A. Kohn und R. A. Potter¹⁰ haben eine ZrSi₂-Struktur in aluminothermisch hergestellten Ti—Si-Legierungen festgestellt. Man sieht, daß es sich offensichtlich um die von uns ermittelte Phase handelt, da die Gitterparameter dieser Autoren mit: a = 3,62; b = 13,76 und c = 3,60 Å nur wenig von unseren Werten abweichen. Demnach ist der C 49-Typ auch dort durch Aluminium¹⁰ stabilisiert.

Die Phase MoAl_{1,3}Si_{0,7}. Über Teilergebnisse im System: Mo—Al—Si wurde bereits berichtet¹¹. Dieser Dreistoff besitzt wegen der Heizleiterlegierungen auf MoSi₂-Basis mit Al-Zusatz seit einiger Zeit erhebliches Interesse¹². Nicht weniger bedeutsam ist der Schnitt: MoSi₂—MoAl₂ vom strukturchemischen Standpunkt, indem nämlich im Anschluß an die sehr stabile Kristallart Mo(Si, Al)₂ mit C-40-Typ nach der MoAl₂-Seite zu noch eine weitere Mo(Al, Si)₂-Phase ermittelt werden konnte. Diese steht sowohl mit Mo(Si, Al)₂ mit C-40-Struktur wie auch mit MoAl₂ im Gleichgewicht. Im Gegensatz zur obigen ternären Phase weist aber die neue ternäre Kristallart nur einen kleinen homogenen Bereich auf und dürfte sich peritektisch aus "C-40" und Schmelze bilden.

Wie schon an den verschiedenen Me—Al—Si-Systemen erkannt wurde, bewirkt eine Absenkung der V. E. K. durch Austausch Si gegen Al eine Änderung der Disilicid-Struktur; sie sollte gegenüber dem MoSi₂- und C 40-Typ noch mehr nech der 4a-Gruppe zu liegen kommen. Tatsächlich hat die MoAl_{1,3}Si_{0,7}-Phase TiS₂-Struktur, wie aus Tab. 2 klar hervorgeht. Als Gitterkonstanten findet man nach Indizierung einer Pulveraufnahme:

$$a = 8,23_9$$
 kX. E.
 $b = 4,78_3$ kX. E.
 $c = 8,75_8$ kX. E.

Dabei sieht man den systematischen Gang des Achsenverhältnisses $c/a \approx c/b/\overline{3}$, das von TiSi₂ über NbAl_{0,6}Si_{1,4} nach MoAl_{1,3}Si_{0,7} zunimmt (1,03₃, 1,04₅, 1,06₃). Die Intensitätsrechnung steht in vollkommener Übereinstimmung mit dem experimentellen Befund. Es wurden allerdings zum Vergleich die Intensitäten von der praktisch gleich streuenden NbAl_{0,6}Si_{1,4}-Phase herangezogen.

Demnach erfährt die früher ausgesprochene Regel über die Strukturklasse der Disilicide eine weitere Stütze, indem hohe V. E. K. den MoSi₂-Typ, geringe V. E. K. den TiSi₂-Typ bevorzugt. Man kann in dieser Richtung noch einen Schritt weiter gehen¹³. Der ZrSi₂-Typ vermittelt

Monatshefte für Chemie, Bd. 92/3

¹⁰ P. G. Cotter, J. A. Kohn und R. A. Potter, J. Amer. Ceram. Soc. **39**, 11 (1956).

¹¹ H. Nowotny und C. Brukl, Mh. Chem. 91, 313 (1960).

 $^{^{12}}$ R. Kieffer und F. Benesovsky, Powder Metallurgy No. 1 und 2; 145 (1958).

¹³ H. Nowotny und E. Parthé, Planseeber. 2, 34 (1954).

hkl	sin² ð beobachtet	sin² 3 berechnet	Intensität geschätzt	Intensität berechnet für Nb(Si, Al)2
(111)	0,0947	0,0914	m	76,5
(202)	1465	1451	ms	38,7
(113)	2318	2297	s	22,1
(311)	2489	2474	\mathbf{sst}	100,0
(004)	2747	2726	m	37,0
(022)	2982	2966	mst^+	69,6
(220)	0000	3055)	ĺ	13,7
(4 00)∫	3082	3082	s	6,7
(313)	3862	3837	\mathbf{mst}	50,8
(115)	5040	5023	ss	7,1
(131))	~~ 10	5505		6,9
(511)	5540	5554)	8+	6,9
(224)	5504	5781)		j11,6
(404)∫	5794	5806∫	ms	5,8
(422)	6048	6046	88	11,7
(315)	6563	6563	m	30,1
(133))		6868)		6,1
(513)	6909	6917	s	$\{ 6, 2 \}$
(206))		6903)		6,3
(331)	7050	7045	m	31,0
(602)	7608	7611	m	29,7
(333)	0419	ا8408	at	(36,1)
(026)Ĵ	8415	8418 ∫	SU	38,5
(040)	0141	9141)		J23,1
(117)∫	9141	9112	m	111,1
(620)	9219	9215	st^+	49,4
(135))	0005	9594)		∫13,8
(515)∫	9009	9643 <i>j</i>	s) 14,8

 $\begin{array}{c} \mbox{Tabelle 2. Auswertung eines Pulverdiagramms einer Mo-Al-Si-Probe, mit 33 At\% Mo, 43,6 At\% Al und 23,4 At\% Si, Phase MoAl_{1,3}Si_{0,7} mit C 54-Typ. Cr-K_{\alpha}-Strahlung \end{array}$

durch die gebuckelten Silicium-Netze bereits zu den räumlichen Si-Netzstrukturen, wie sie bei den Disiliciden der Lanthaniden und Actiniden auftreten. In diesem Sinne wäre dann auch der ZrSi_2 -Typ bei Ti(Al, Si)₂ zu verstehen. Es ist interessant, diese Strukturklasse noch weiter zu verfolgen: So treten bei den seltenen Erdmetall-Disiliciden die großen S. E.-Atomionen immer stärker aus dem Si-Verband heraus, wie es ja bei ZrSi₂ bereits angedeutet ist. Im Falle von CaSi₂ sind die gebuckelten Si-Netze bereits für sich isoliert.

Weitere Me-Al-Si-Systeme sind derzeit Gegenstand diesbezüglicher Untersuchungen.

Diese Untersuchung entstand durch teilweise Unterstützung des US-Governments, Contract No. 91-591 EUC-1487.